New Standards for Next Generation
Computational Storage Devices

Brian Myungjune JUNG
Samsung Electronics
Oct. 23, 2020

Topics

New Standards for the Next Generation Computational Storage Devices

« SNIA Computational Storage (CS) Programming Model and API
« Extended Berkeley Packet Filter (eBPF)

« Compute Express Link (CXL)

What 1s Computational Storage (CS)?

Definitions))
Computational Storage Architecture

« Computational Storage is defined as architectures Move Compute Closer to Storage
that provide Computational Storage Services

coupled to storage, offloading host processing, or e

reducing data movement

< "What is Computational Storage?", SNIA >
J+— API definitions here \

« Computational storage adds computing Bl Em,,a compute TN compute
capabilities to traditional storage devices and

systems, enabling processing to be carried out E ™ =
®|'® | &

directly on the storage drive

SSt $SD CcsD csD

< IIA M M | n -
Guide to Computational Storage on ARM", ARM > CSD=ComputatonaTotoraee Drive

< Source: https://www.snia.org/education/what-is-computational-storage >

3

Datacenter Pain Points:

The first is network and the second is CPU

"} e
T owewstenz | (2) CPU Power Limit

_ i | o
o o O

* DW CLUSTER 1 -+ .
DW CLUSTER 3

% “‘l BEEN:

NETWORKING

l (1) Network Bandwidth Limit

1 2 x IMPROVEMENT
STORAGE THROUGHPUT

2 IMPROVEMENT
X CPU-DRAM THROUGHPUT

—
Mj SHARED CENTRAL STORAGE 2012 TODAY

Existing Data Warehousing Architecture Hardware Trends Since 2012

< source: https://pages.awscloud.com/AQUA_Preview.html >

Strateqgy:

Bring compute closer to storage

AQUA Architecture

Amazon
Redshift cluster

High speed networking Filtered & aggregated results
Sub query
Parallel execution

AQUA layer [, \L \L \L

scale-out
architecture

Amazon 53
Durable storage

(*) AQUA: Advanced Query Accelerator

AQUA* accelerates Redshift queries by running data intensive tasks

such as filtering and aggregation closer to the storage layer.

»* AQUA uses AWS-designed processors to accelerate queries.
AWS Nitro chips adapted to speed up data encryption and compression,
and custom analytics processors, implemented in FPGAs, to accelerate operations such

as filtering and aggregation.

-> Computational Storage, Finally?

The AQUA hardware sits inline in the network between the S3 storage and Redshift cluster,
acting as a caching bump in the wire and also as a sub-query offload processing system

< source: https://pages.awscloud.com/AQUA_Preview.html >

News from ARM:

ARM's New CPU for Computational Storage - Cortex R82

Highest performance Arm Cortex-R processor to
power the future of computational storage

September 03, 2020
By Neil Werdmuller, director of storage solutions at Arm
News highlights:

¢ Arm Cortex-R82 is the highest performance Cortex-R processor, with 64-bit support and Linux-capability

¢ Real-time processor enables data processing where it is stored for next-generation enterprise and computational

storage solutions

e (Combines higher performance and access to greater memory with extensive Arm Linux and server ecosystems

< source: https://www.arm.com/company/news/2020/09/highest-performance-arm-cortex-r-processor >

A| COMPUTATIONAL
SNIA. | STORAGE

Computational Storage (CS)
Architecture / Programming Model (/ APIs)

information technology

MMMMM

< source: SNIA Computational Storage Architecture and Programming Model Version 0.5 Revision 1, Working Draft, Auq76th, 2020 >

Version 0.5 Revision 1

https://www.snia.org/sites/default/files/technical_work/PublicReview/SNIA-Computational-Storage-Architecture-and-Programming-Model-0.5R1.pdf

Computational Storage (CS) Architecture

Host 1

G838
Dirivers |

Host 2

CS8
Sl

(=3
Diriver |

i

Host N

]

CSP: Computational Storage Processor
CSD: Computational Storage Drive
CSA: Computational Storage Array

]

=

Storage
Controller

Storage

Traditional
Storage Device

Computational
Storage Processor

Storage

Computational
Storage Drive

Storage Controller Storage Controller
Providing Providing
Transparent Transparent
Storage Storage
Proxied Storage Access Proxied Storaga Access
Access (Optional) (Optional) Access (Optional) (Optional)
Storage | Storage Storage
Storage orCSD | orCsD [~~~ | orcsSD

Computational Storage Drive
(Access via CSP and/or direct to Storage)

Computational Storage Array
(Access via CSP and/or direct to Storage)

CSP

csD
Type 1

CsD
Type 2

CSA

Fabric (PCle, Ethernet, ﬁ>

CS Related Standards to focus on

Host 1

_Host2

L

S ==

CS5

eBPF: Filter API

J « SNIA: Programming Model and API

]

U

Fabric (PCle, Ethernet, ﬁ>
@

[|
Stumg:a Storage Controller Storage Controller
Controller Providing Providing
Storage Transparent Transparent
Storage
Proxied Storage Access : :
Access (Optional) (Optional) Access (Optional) (Optional)
Storage | Storage Storage
- i orCsSD | orcsb [~""" | orcsD
Traditional Computational Computational Computational Storage Drive Computational Storage Array
Storage Device Storage Processor Storage Drive (Access via CSP and/or direct to Storage) (Access via CSP and/or direct to Storage)
Type 1 Type 2

CXL: Interconnect

CS Operations (APlIs)

» Device Discovery
« ldentify CSx Devices

 Device Access

« Open, Close
Host
* CS Memory Management Memory
» Allocate/Deallocate CS Memory 5 Y
CS Data
« Data Movement Program Movernent Normal 1/0
« Transfer data between host memory and CS memory area I !
 Transfer (P2P) data between CS memory area and SSD CSP Pop
. <« NVMe
« CSx Scheduling CS Mem
« Schedule compute offload to device
CS Device

« General Device Management
« Download programs
« Query device properties & capabilities
« Configure device functionalities

CS Operation Example: Discovery

Host 1 Host 2 Host N
(=] E =) | 7T (=]

<: f_{:& ﬁ ﬁ External Fabric

(CHEE); XX\
GNT lle] MGNT o \\
- Storage Inferface
(Virtual})
@ *,

<: @ — ﬁ ----- Iﬁmm Fat:m> < ﬁ ~ %mm Fm:ﬁ>

vt o | | | e T] | | e o] o -8} | | e o]
Traditional Starage Tradiional Storage Traditional Storage e
Device Device Device
Storage Storage Storage
Computational Storage Drive with non-visible intemal components Computational Storage Drive with visible internal components

(1) The host sends a CSS discovery request over the fabric to one or more CSxes.
(2) CSxes may repeat this discovery process for internally accessible CSxes, which may use the standardized CSx/CSS discovery process.
(3) Each CSx that accepts the discovery request returns a CSS discovery response to the requesting host.

CS Operation Example: Configuration

Host 1 Host 2 Host N

e e [— o
I Diwis’ IDer Dviviets

< — @ . External Fat::'b

gy
(@) ﬁ
GNT o MGNT o
CES 1]
Storage Interface
(\irtual)
L]
@ °,

m{venT |-INON | | p(Ment HIEWOR | | glivenT i | MoNT [RUGH
Traditional Storage Traditional Storage H Traditional Storage H
Device Device Devica
Storage Storage Storage
Computational Storage Drive with non-visible intermal components Computational Storage Drive with visible intermnal components

The host sends a CSS configuration request over the fabric to a target CSx

The target CSx may repeat the configuration process with internally accessible CSxes.

For Programmable CSSes, the configuration process may result in the creation of one or more new Programmable and/or Fixed CSSes.
The target CSx returns a CSS configuration response to the requesting host.

~— — —

(1
(2
3
4

CS Operation Example: Direct Usage

(1)
(2)
(3)
(4)

Host 1
[&=] [

Host 2

CEE
Dwivazen

R

==

External Fat:@;

g

Internal Fab}

Computational Storage Drive with non-visible intemal components

Computational Storage Drive with visible internal components

Internal Fa

I

]

Traditional Storage
Device

Storage

The host sends a CSS command to a target CSS.

The target CSS may send one or more commands to other internally accessible CSSes.
The target CSS may send one or more commands to other storage or memory devices to retrieve and/or store data.

The target CSS returns a CSS command response to the requesting host.

13

Host 2

CEE
Dyivaats,

CS Operation Example: Transparent Usage

External Em:>

Internal Fa

bri>

U

MGNT o MGNT [}
Traditional Storage Traditional Storage
Device Device
Storage Storage

[vont L

Computational Storage Drive with non-visible intemal components

Internal Fa

]

Computational Storage Drive with visible intemnal components

(1) The host sends unmodified storage interface operations to a target Storage Interfaced that is associated with the target CSS.

14

CS Services: Fixed and Programmable

Fixed CS Services Programmable CS Services
« Compression - Operating System Image Loader

- Data Filter - Container Image Loader

* Encryption - eBPF Loader

 Erasure Coding « FPGA Bitstream Loader

* RegEx « Large Data Set

 Scatter-Gather

 Pipeline

* Video Compression
« Hash/CRC
- Data Deduplication

SNIA CS Technical Work Group

Introduction
» 45 participating companies / 202 member representatives = SNIA. Q@
» Focus on definition list to ensure the TWG covers question on Computational Storage

T da y >mputa e nsformin g erpri ses worl ridwide. The SNIA
e al v G T i t i and st

what computational storage is and what its products can be

What happens when Compute meets
Storage?

SNIA Education tracl k presentation on

Cot mp utational Storage from SDC EMEA 2020.

Pre: dbyL ah Schoeb, SNIA Technical Council
Mmb and Eli Tiomkin, SNIA Computational
Storage Specia! Interest Group Chair.

 Drive to a scope and path to a universal usage model

» SNIA's Computational Storage Technical Work Group is
developing a Computational Storage Architecture and
Programming Model — defining recommended behavior for
hardware and software that support computational storage

Technology Standards & Software Technical Work Group

SNIA

s orage &
tion technology

Computational Storage
Architecture and Programming
Model

VerJio@ 0.5 Revision 1

https://www.snia.org/tech_activities/publicreview#comp

SNIA CS Technical Work Group

45 participating companies / 202 member representatives

AMDD1 CQArM e@sroapcom CALYPSO & [4oicida DELLEMC @ €0eTi

Systems

%CHI\IL%GII\DS' i1 F A DU FUT?TSU B | E A\ I U Eﬁﬁfﬁackard HITACHI EEE:_;—:: I;E;N Nﬁf)%R';g
INSpur (intel, - It A4 Mellanox
pur @D G @ enovo IE] su vt

NGD NYRIAD

Micron SMeosemi pEC MINetAppr @I NETINT &35

a KT MicracHI

ORACLE PLIOPS> O purestorage @ ROCKPORT SNAMSUNG @ ScaleFlux @

SMART" SUPERMICR® TOSHIBA vmware Presten &7 XILINX.

@smconnaoﬁon SK Py nix

17

N eBPF

eBPF (extended Berkeley Packet Filter)

What 1s eBPF?
. extended Berkeley Packet Filter

« eBPF is a small virtual machine which runs programs injected from user space and attached
to specific hooks in the kernel

. ‘ ‘ Pro& aee]m: { Process]

sendmsg() recvmsg() write() read()

Syscall Syscall

HeBPF HeBPF

v |

v |
Sockets ﬁesp}: [File Descriptor]
TCP/IP ﬁeal;F [VFS hemer

Linux
Kernel

[Network Device] [Block Device] eee
f 1
eBPF W eBPF

| ‘|
Mg(wl [Storage }

Network Packet Filtering
- Classic BPF, introduced in 1992 by Van Jacobson

Source: https://ebpf.io/

19

Why so special?

: New generation of tooling

By making the Linux kernel programmable, infrastructure software can leverage existing
layers, making them more intelligent and feature-rich without continuing to add additional

layers of complexity to the system.

eBPF has resulted in the development of a completely new generation of tooling in areas
such as networking, security, application profiling/tracing and performance
troubleshooting that no longer rely on existing kernel functionality but instead actively
reprogram runtime behavior without compromising execution efficiency or safety.

Source: https://ebpf.io/

20

eBPF Hook Overview

. eBPF programs are event-driven and are run when reached to certain hook point

[Process J
execve()
Syscall
é @ Pre-defined hooks include

X Q

S c [v | « system calls
Scheduler . i i

5 2 function entry/exit

« kernel tracepoints
« network events

int syscall__ret_execve(struct pt_regs *ctx)

{

struct comm_event event = {

.pid = bpf_get_current_pid_tgid() >> 32, Customizability

SYRERS IR el « If a pre-defined hook does not exist for a
particular need, it is possible to create a kernel
bpf_get_current_comm(&event.comm, sizeof(event.comm)); probe (kprobe) or user probe (uprobe) to attach
comm_events.perf_submit(ctx, &event, sizeof(event)); eBPF programs almost anywhere in kernel or
user applications

¥

return

Source: https://ebpf.io/

21

How are eBPF programs written?

: High level user codes -> eBPF Bytecodes -> Machine specific instruction sets

eBPF
Program

== Program

|: TR]L»g"'ﬁéé'g};éﬁm% ' Maps { Process]
[WXeBPF Go Library] sendmsg()

Development |
W recvmsg()
I

[syscall | LSyscaII J

l - > HeBPF

K3 eBPF . \ A

>3< g [@e.BPF Verifier] |, AeBPF Sockets]
C

i (#eapF JIT Compiler] { TCP/IP]

. S . https://ebpf.io
Runtime ource: https://ebpt.io/

22

Loader & Verification Architecture

. eBPF bytecode loading -> verification -> JIT compilation

Loading
« eBPF program can be loaded into the Linux
kernel using the bpf() system call
Process [Process] « As the program is loaded into the Linux
kernel, it passes through two steps before

= eBPF

bpf() | B rogran sendmsg() : 5 ‘recvmsg() being attached to the requested hook
[SEElL J L sz;illl: _] Verification
¢ « The verification step ensures that the eBPF
X QO | &heaPF Verifier Sockets program is safe to run
5 C '
- E ¥86 S : U y JIT Compilation
— v == program | Network Device « This step translates the generic bytecode of

—

(e8P JIT Compiler the program into the machine specific

instruction set

« This makes eBPF programs run as efficiently
as natively compiled kernel code or as code
loaded as a kernel module.

Source: https://ebpf.io/
23

eBPF Maps

. to store and retrieve data in a wide set of data structures

eBPF maps
Process Process « can be accessed from eBPF programs

as well as from applications in user
space via a system call

A ;A
sendmsg() : : recvmsg ()

[syscall | Lsﬁ@nJ

HeBPF Supported map types
L Hash tables, Arrays

[Network Device]

X O -— .

S5 C eBPF [SOEkES J « LRU (Least Recently Used)
=T Maps > gespr _TCP/IP Ring Buffer

— « Stack Trace

LPM (Longest Prefix match)

Source: https://ebpf.io/

Helper Calls

: to help eBPF programs which cannot call into kernel functions directly

[Process }

sendmsg() T recvmsg()

Syscall
aeaPF
é EI:J [Sockets]
— [...])
E Q num = bpf get prandom u32(); HeBPF TCP/IP
— v — -

[...] [Network Device]

Why eBPF helper calls?

eBPF programs cannot call into
arbitrary kernel functions

Instead, eBPF programs can make
function calls into helper functions, a
well-known and stable API offered by
the kernel

Helper call examples:

Generate random numbers

Get current time & date

eBPF map access

Get process/cgroup context
Manipulate network packets and

forwarding logic
g o9 Source: https://ebpf.io/

25

eBPF Example Codes

. bpf+sockets example

int main(int argc, char **argv)

{
int sock, map_fd, prog_fd, key;
long long value = @, tcp_cnt, udp_cnt;
map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(key), sizeof(value), 256);
if (map_fd < @) { /* likely not run as root */

printf("failed to create map '%s'\n", strerror(errno)); return 1;
"

[struct bpf_insn prog[] = { R
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), /* r6e = r1 */
BPF_LD_ABS(BPF_B, ETH_HLEN + offsetof(struct iphdr, protocol)), /* r@ = ip->proto */
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_O©, -4), /* *(u32 *)(fp - 4) = ro */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_180), /* r2 = fp */
BPF_ALU64_ IMM(BPF_ADD, BPF_REG_2, -4), /*r2 =r2 -4 %/
BPF_LD_MAP_FD(BPF_REG_1, map_fd), /* rl = map_fd */
BPF_CALL_FUNC(BPF_FUNC_map_lookup_elem), /* r@ = map_lookup(ri, r2) */
BPF_JMP_IMM(BPF_JEQ, BPF_REG 0, @, 2), /* if (r@ == @) goto pc+2 */
BPF_MOV64_IMM(BPF_REG_1, 1), /¥ rl =1 %/
BPF_XADD(BPF_DW, BPF_REG_©, BPF_REG 1, @, @), /* lock *(u64 *) ro += rl */
BPF_MOV64_IMM(BPF_REG_©, @), /*re =0 */
BPF_EXIT_INSN(), /* return ro */

b V.
prog_fd = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, prog, sizeof(prog), "GPL");
sock = open_raw_sock("1lo");
assert(setsockopt(sock, SOL_SOCKET, SO_ATTACH_BPF, &prog fd, sizeof(prog_fd)) == 0);
for (55) {

key = IPPROTO_TCP; assert(bpf_lookup_elem(map_fd, &key, &tcp_cnt) == 0);
key = IPPROTO_UDP; assert(bpf_lookup_elem(map_fd, &key, &udp_cnt) == 0);
printf("TCP %11d UDP %11d packets\n", tcp_cnt, udp_cnt);
sleep(1l);
}
return 0;
}

N —

Create array map of 256 elements

Load program that counts number of packets received
r0 = skb->data[ETH_HLEN + offsetof(struct iphdr, protocol)]
map[rO]++

Attach prog_fd to raw socket via setsockopt()

Print number of received TCP/UDP packets every second

char bpf_log buf[LOG_BUF_SIZE];

int

bpf_prog_load(enum bpf_prog_type type,
const struct bpf_insn *insns, int insn_cnt,
const char *license)

{
union bpf_attr attr = {
.prog_type = type,
.insns = ptr_to_u64(insns),
.insn_cnt = insn_cnt,
.license = ptr_to_u64(license),
.log_buf = ptr_to_u64(bpf_log buf),
.log_size = LOG_BUF_SIZE,
.log_level = 1,
}s
return bpf(BPF_PROG_LOAD, &attr, sizeof(attr));
}

prog_type is one of the available program types:

enum bpf_prog_type {
BPF_PROG_TYPE_UNSPEC, /* Reserve @ as invalid
program type */
BPF_PROG_TYPE_SOCKET_FILTER,
BPF_PROG_TYPE_KPROBE,
BPF_PROG_TYPE_SCHED_CLS,
BPF_PROG_TYPE_SCHED_ACT,

}s

26

CXLE:

CXL (Compute Express Link)

What is CXL? Co{L%

Interconnect standard between host processors and devices

Open industry standard for high bandwidth, low-latency Wirgless " e e @ @ o
interconnect between host processor and accelerators/ FRETTa e O o
memory devices/ smart NICs/ and others =
, Core/Edge
Maintains memory coherency between CPU memory space — s
and memory on attached devices - | sone s
« Allows resource sharing for higher performance & Om_—- T2 | veat swich

* Reduced complexity and lower overall system cost

—I TOR Switch

» Permits users to focus on target workloads as opposed to redundant

memory management Data center

interconnect

Addresses high-performance computational workloads across
Al, ML, HPC, and so on

Based on PCle 5.0 PHY infrastructure

Processor
interconnect

SoC
interconnect

SHYOMLIN
J80W

Y31IN3D ViIVa

30 | 39VDVd

Why CXL?

For heterogeneous computing and disaggregation

Need a new class of interconnect for heterogeneous computing and disaggregation usages:
« Efficient resource sharing
« Shared memory pools with efficient access mechanisms
« Enhanced movement of operands and results between accelerators and target devices
« Significant latency reduction to enable disaggregated memory

» The industry needs open standards that can comprehensively address next-gen interconnect

challenges
CPU-attached Memory CPU-attached Memory
Writeback (OS Managed) Writeback (OS Managed)
""‘°'V 1 PC'*’ D CXL enabled "e"‘“’ I
environment
GPU FPGA Al CPU
::: ::: = == gf: ”‘1‘1,,1 o > --- —

Today's | | '
< M ; N mo
LoaedTSc;Z'e v | LoMaed/Stz'e

environment

Accelerator-Attached Memory

Accelerator-Attached Memory
(Runtime managed cache)

(Runtime managed cache)

CXL Consortium Board of Directors

. 'Core group' announced incorporation of the CXL consortium on Sep. 17, 2019

« Alibaba, Cisco, Dell EMC, Facebook, Google, Hewlett Packard Enterprise, Huawei, Intel
Corporation and Microsoft announced their intent to incorporate in March 2019

 This core group announced incorporation of the Compute Express Link (CXL) Consortium on
Sep. 17, 2019 and unveiled the names of its Board of Directors

€2 ' arm et perevc

Alibaba Group AMD
—

facebook GO gle sré Hewlett Packard

HUAWEI Enterprise

=. Microsoft & XILINX.

MICROCHIP

30

CXL Architecture

: Three multiplexed subprotocols (io, cache, mem) on a link, sharing PCle PHY

Internal
10 Device(s)

I

Host Processor

CPU Core CPU Core

-

PCle/CXLIO |« Coherence and Memory Logic
Logic
A ‘P s

10 Memory Cache

~w—y : —
v
PCle/CXL Logical PHY
PCle PHY

CXL Device
Accelerator
Logic
10 (PCle)
Discovery
MeM Cache Configuration

Memory Flows

Coherent Requests

Memory Flows Initialization

Interrupts
DMA

i 10 Virtualization
\\\\ .7‘///‘
PCle/CXL Logical PHY
PCle PHY

1

CXL -- Dynamically Multiplexed 10, Cache and Memory in flit format on PCle PHY

CXL.io

PCle based - discovery, register access,
interrupts, initialization, 1/0
virtualization, DMA, etc.

CXL.cache

Device access to processor memory
Supports dievice caching of host
memory with host processor
orchestrating the coherency
management

CXL.mem

Processor access to device attached
memory

Host manages device attached
memory similar to host memory

31

CXL Protocol Stack

. Designed for low latency

PCle CXL
Transaction Transaction
Layer Layer

CXL.cache/CXL.mem
Transaction Layer

R I

CXL.cache/CXL.mem
Link Layer

Static Mux

PCle/CXL Logical Phy
PCle/CXL Analog Phy

PCle
Transaction
Layer

l

PCle Logical Phy
PCle Analog Phy

CXL.cache and CXL.mem optimized for latency
» Fixed message framing
« Separate transaction and link layer from 10

CXL.io flows pass through a stack that is largely

identical a standard PCle stack

* Dynamic framing

« Transaction Layer Packet (TLP) / Data Link Layer
Packet (DLLP) encapsulated in CXL flits

32

CXL Use Cases

: There are three types of CXL device: Type 1, 2, 3

ﬁ ot comples ﬁ o comples JI o ol
. . IIOMMU .
Cxl.io

CXLimem

I IOMMU I IoMMU
CX(.io CX|.io

CXLxache

Type 1 CXL Device Type 2 CYL Device Type 3 CXL Device

\
Type 1 Device: Type 2 Device: Type 3 CXL Device:
Caching Devices / Accelerators Accelerators with Memory Memory Expanders

CXL.{io, cache} CXLJ{io, cache, mem} CXL.{io, mem}

33

CXL's Cache Coherence Architecture

: CXL has asymmetric architecture, and bias based coherency models (device/host)

-

Device Bias - Host Bias

asymmetric CCI* architecture

(*) Cache Coherent Interface

Device Bias Host Bias

Accelerator
Accelerator CPU+ 10

Accelerator

Accelerator Engine

Cache Cache

Biased
Coherence

Accelerator Local
Memory Host Memory

Accelerator Local
Memory

Critical access class “Coherence Bias” allows a Two driver managed Both biases guaranteed
for accelerators is device engine to access its modes or “Biases” correct/coherent
“device engine to memory coherently without B Guarantee applies even when software bugs or
device memory” visiting the processor DEVICE BIAS: pages being used exclusively by e e o e o et e
fhe deviee 34

CXL Summary

. CXL will accelerate heterogeneous computing and disaggregation

S (OS Managed) e oA

Memory Memory
Load/Store I
PU :

G
Ill --- = '
L me. :

; Memory Load/Store I

Writeback PCle DMA
Memory Accelerator-Attached Memory

Storage

CXL has the right features and architecture to
enable a broad, open ecosystem for
heterogeneous computing and disaggregation

Right abstractions with CXL.cache and CXL.mem
to deliver better performance with emerging
applications such as Al, HPC, DL and future
compute/memory-intensive computing

CXL 2.0 development in full progress for
additional usage models

What if we have CXL based
computational memory/storage?

35

Wrap-up

New Standards for the Next Generation Computational Storage Devices

« SNIA Computational Storage (CS) Programming Model and API

« New standard for computational storage, essential to build computational storage ecosystem

« Extended Berkeley Packet Filter (eBPF)

« New usage of eBPF - to monitor/handle/filter device events, to execute user codes inside the device

« Compute Express Link (CXL)

« New CPU-device interconnect standard for heterogeneous computing and disaggregation

« Essential for computational SCM or memory pool for memory-intensive computing systems

36

Thank You

