
New Standards for Next Generation 
Computational Storage Devices

Brian Myungjune JUNG

Samsung Electronics

Oct. 23, 2020



Topics
New Standards for the Next Generation Computational Storage Devices

2

• SNIA Computational Storage (CS) Programming Model and API

• Extended Berkeley Packet Filter (eBPF)

• Compute Express Link (CXL)



Definitions

• Computational Storage is defined as architectures 

that provide Computational Storage Services 

coupled to storage, offloading host processing, or 

reducing data movement

< "What is Computational Storage?", SNIA >

• Computational storage adds computing 

capabilities to traditional storage devices and 

systems, enabling processing to be carried out 

directly on the storage drive

< "A Guide to Computational Storage on ARM", ARM >

< Source: https://www.snia.org/education/what-is-computational-storage >

What is Computational Storage (CS)?

3



Datacenter Pain Points:

The first is network and the second is CPU

(2) CPU Power Limit

(1) Network Bandwidth Limit

< source: https://pages.awscloud.com/AQUA_Preview.html >

Hardware Trends Since 2012Existing Data Warehousing Architecture

4



Strategy:

Bring compute closer to storage

< source: https://pages.awscloud.com/AQUA_Preview.html >

AQUA Architecture

AQUA* accelerates Redshift queries by running data intensive tasks

such as filtering and aggregation closer to the storage layer.

※ AQUA uses AWS-designed processors to accelerate queries.

AWS Nitro chips adapted to speed up data encryption and compression,

and custom analytics processors, implemented in FPGAs, to accelerate operations such 

as filtering and aggregation.

(*) AQUA: Advanced Query Accelerator

The AQUA hardware sits inline in the network between the S3 storage and Redshift cluster, 
acting as a caching bump in the wire and also as a sub-query offload processing system

5

-> Computational Storage, Finally?



News from ARM:

ARM's New CPU for Computational Storage - Cortex R82

< source: https://www.arm.com/company/news/2020/09/highest-performance-arm-cortex-r-processor >

6



Computational Storage (CS)
Architecture / Programming Model (/ APIs)

< source: SNIA Computational Storage Architecture and Programming Model Version 0.5 Revision 1, Working Draft, Aug. 6th, 2020 >7

https://www.snia.org/sites/default/files/technical_work/PublicReview/SNIA-Computational-Storage-Architecture-and-Programming-Model-0.5R1.pdf


Computational Storage (CS) Architecture

CSP CSD
Type 1

CSD
Type 2

CSA

CSP: Computational Storage Processor
CSD: Computational Storage Drive
CSA: Computational Storage Array

8



CS Related Standards to focus on

• SNIA: Programming Model and API

• eBPF: Filter API

• CXL: Interconnect

CSP CSD
Type 1

CSD
Type 2

CSA

9



CS Operations (APIs)

• Device Discovery

• Identify CSx Devices

• Device Access

• Open, Close

• CS Memory Management

• Allocate/Deallocate CS Memory

• Data Movement

• Transfer data between host memory and CS memory area

• Transfer (P2P) data between CS memory area and SSD

• CSx Scheduling

• Schedule compute offload to device

• General Device Management

• Download programs

• Query device properties & capabilities

• Configure device functionalities

Host
Memory

CS Device

CSP

CS Mem
NVMe

P2P

Program Normal I/OCS Data
Movement

10



CS Operation Example: Discovery

(1) The host sends a CSS discovery request over the fabric to one or more CSxes.
(2) CSxes may repeat this discovery process for internally accessible CSxes, which may use the standardized CSx/CSS discovery process.
(3) Each CSx that accepts the discovery request returns a CSS discovery response to the requesting host.

11



CS Operation Example: Configuration

(1) The host sends a CSS configuration request over the fabric to a target CSx
(2) The target CSx may repeat the configuration process with internally accessible CSxes. 
(3) For Programmable CSSes, the configuration process may result in the creation of one or more new Programmable and/or Fixed CSSes.
(4) The target CSx returns a CSS configuration response to the requesting host.

12



CS Operation Example: Direct Usage

(1) The host sends a CSS command to a target CSS.
(2) The target CSS may send one or more commands to other internally accessible CSSes.
(3) The target CSS may send one or more commands to other storage or memory devices to retrieve and/or store data.
(4) The target CSS returns a CSS command response to the requesting host.

13



CS Operation Example: Transparent Usage

(1) The host sends unmodified storage interface operations to a target Storage Interfaced that is associated with the target CSS.

14



Fixed CS Services
• Compression

• Data Filter

• Encryption

• Erasure Coding

• RegEx

• Scatter-Gather

• Pipeline

• Video Compression

• Hash/CRC

• Data Deduplication

CS Services: Fixed and Programmable

Programmable CS Services
• Operating System Image Loader

• Container Image Loader

• eBPF Loader

• FPGA Bitstream Loader

• Large Data Set

15



SNIA CS Technical Work Group

Introduction

• 45 participating companies / 202 member representatives

• Focus on definition list to ensure the TWG covers question on 

what computational storage is and what its products can be

• Drive to a scope and path to a universal usage model

• SNIA’s Computational Storage Technical Work Group is 

developing a Computational Storage Architecture and 

Programming Model – defining recommended behavior for 

hardware and software that support computational storage 

16

https://www.snia.org/tech_activities/publicreview#comp


SNIA CS Technical Work Group

45 participating companies / 202 member representatives

17



eBPF (extended Berkeley Packet Filter)

Source: https://ebpf.io/18



What is eBPF?

: extended Berkeley Packet Filter
• eBPF is a small virtual machine which runs programs injected from user space and attached 

to specific hooks in the kernel

Network Packet Filtering
- Classic BPF, introduced in 1992 by Van Jacobson

...

19

Source: https://ebpf.io/



Why so special?

: New generation of tooling

Source: https://ebpf.io/

• By making the Linux kernel programmable, infrastructure software can leverage existing 

layers, making them more intelligent and feature-rich without continuing to add additional 

layers of complexity to the system.

• eBPF has resulted in the development of a completely new generation of tooling in areas 

such as networking, security, application profiling/tracing and performance 

troubleshooting that no longer rely on existing kernel functionality but instead actively 

reprogram runtime behavior without compromising execution efficiency or safety.

20



eBPF Hook Overview
: eBPF programs are event-driven and are run when reached to certain hook point

Pre-defined hooks include
• system calls
• function entry/exit
• kernel tracepoints
• network events
• ...

Customizability
• If a pre-defined hook does not exist for a 

particular need, it is possible to create a kernel 
probe (kprobe) or user probe (uprobe) to attach 
eBPF programs almost anywhere in kernel or 
user applications

21

Source: https://ebpf.io/



How are eBPF programs written?
: High level user codes -> eBPF Bytecodes -> Machine specific instruction sets

22

Source: https://ebpf.io/



Loader & Verification Architecture
: eBPF bytecode loading -> verification -> JIT compilation

Loading
• eBPF program can be loaded into the Linux 

kernel using the bpf() system call
• As the program is loaded into the Linux 

kernel, it passes through two steps before 
being attached to the requested hook

Verification
• The verification step ensures that the eBPF 

program is safe to run

JIT Compilation
• This step translates the generic bytecode of 

the program into the machine specific 
instruction set

• This makes eBPF programs run as efficiently 
as natively compiled kernel code or as code 
loaded as a kernel module.

23

Source: https://ebpf.io/



eBPF Maps
: to store and retrieve data in a wide set of data structures

eBPF maps
• can be accessed from eBPF programs 

as well as from applications in user 
space via a system call

Supported map types
• Hash tables, Arrays
• LRU (Least Recently Used)
• Ring Buffer
• Stack Trace
• LPM (Longest Prefix match)
• ...

24

Source: https://ebpf.io/



Helper Calls
: to help eBPF programs which cannot call into kernel functions directly

Why eBPF helper calls?
• eBPF programs cannot call into 

arbitrary kernel functions
• Instead, eBPF programs can make 

function calls into helper functions, a 
well-known and stable API offered by 
the kernel

Helper call examples:
• Generate random numbers
• Get current time & date
• eBPF map access
• Get process/cgroup context
• Manipulate network packets and 

forwarding logic

25

Source: https://ebpf.io/



eBPF Example Codes
: bpf+sockets example

int main(int argc, char **argv)
{

int sock, map_fd, prog_fd, key;
long long value = 0, tcp_cnt, udp_cnt;
map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(key), sizeof(value), 256);
if (map_fd < 0) { /* likely not run as root */

printf("failed to create map '%s'\n", strerror(errno)); return 1;
}
struct bpf_insn prog[] = {

BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),        /* r6 = r1 */
BPF_LD_ABS(BPF_B, ETH_HLEN + offsetof(struct iphdr, protocol)), /* r0 = ip->proto */
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -4), /* *(u32 *)(fp - 4) = r0 */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),       /* r2 = fp */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),      /* r2 = r2 - 4 */
BPF_LD_MAP_FD(BPF_REG_1, map_fd),           /* r1 = map_fd */
BPF_CALL_FUNC(BPF_FUNC_map_lookup_elem),    /* r0 = map_lookup(r1, r2) */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),      /* if (r0 == 0) goto pc+2 */
BPF_MOV64_IMM(BPF_REG_1, 1),                /* r1 = 1 */
BPF_XADD(BPF_DW, BPF_REG_0, BPF_REG_1, 0, 0), /* lock *(u64 *) r0 += r1 */
BPF_MOV64_IMM(BPF_REG_0, 0),                /* r0 = 0 */
BPF_EXIT_INSN(),                            /* return r0 */

};
prog_fd = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, prog, sizeof(prog), "GPL");
sock = open_raw_sock("lo");
assert(setsockopt(sock, SOL_SOCKET, SO_ATTACH_BPF, &prog_fd, sizeof(prog_fd)) == 0);
for (;;) {

key = IPPROTO_TCP; assert(bpf_lookup_elem(map_fd, &key, &tcp_cnt) == 0);
key = IPPROTO_UDP; assert(bpf_lookup_elem(map_fd, &key, &udp_cnt) == 0);
printf("TCP %lld UDP %lld packets\n", tcp_cnt, udp_cnt);
sleep(1);

}
return 0;

}

char bpf_log_buf[LOG_BUF_SIZE];

int
bpf_prog_load(enum bpf_prog_type type,

const struct bpf_insn *insns, int insn_cnt,
const char *license)

{
union bpf_attr attr = {

.prog_type = type,

.insns     = ptr_to_u64(insns),

.insn_cnt  = insn_cnt,

.license   = ptr_to_u64(license),

.log_buf   = ptr_to_u64(bpf_log_buf),

.log_size  = LOG_BUF_SIZE,

.log_level = 1,
};

return bpf(BPF_PROG_LOAD, &attr, sizeof(attr));
}

prog_type is one of the available program types:

enum bpf_prog_type {
BPF_PROG_TYPE_UNSPEC,        /* Reserve 0 as invalid

program type */
BPF_PROG_TYPE_SOCKET_FILTER,
BPF_PROG_TYPE_KPROBE,
BPF_PROG_TYPE_SCHED_CLS,
BPF_PROG_TYPE_SCHED_ACT,

};

1. Create array map of 256 elements
2. Load program that counts number of packets received

r0 = skb->data[ETH_HLEN + offsetof(struct iphdr, protocol)]
map[r0]++

3. Attach prog_fd to raw socket via setsockopt()
4. Print number of received TCP/UDP packets every second

26



CXL (Compute Express Link)

27



What is CXL?

: Interconnect standard between host processors and devices

• Open industry standard for high bandwidth, low-latency 
interconnect between host processor and accelerators/ 
memory devices/ smart NICs/ and others

• Maintains memory coherency between CPU memory space 
and memory on attached devices

• Allows resource sharing for higher performance

• Reduced complexity and lower overall system cost

• Permits users to focus on target workloads as opposed to redundant 
memory management

• Addresses high-performance computational workloads across 
AI, ML, HPC, and so on

• Based on PCIe 5.0 PHY infrastructure

28



Why CXL?

: For heterogeneous computing and disaggregation

• Need a new class of interconnect for heterogeneous computing and disaggregation usages:

• Efficient resource sharing

• Shared memory pools with efficient access mechanisms

• Enhanced movement of operands and results between accelerators and target devices

• Significant latency reduction to enable disaggregated memory

• The industry needs open standards that can comprehensively address next-gen interconnect 
challenges

Today's
environment

CXL enabled
environment

29



CXL Consortium Board of Directors
: 'Core group' announced incorporation of the CXL consortium on Sep. 17, 2019

• Alibaba, Cisco, Dell EMC, Facebook, Google, Hewlett Packard Enterprise, Huawei, Intel 
Corporation and Microsoft announced their intent to incorporate in March 2019

• This core group announced incorporation of the Compute Express Link (CXL) Consortium on 
Sep. 17, 2019 and unveiled the names of its Board of Directors

30



CXL Architecture
: Three multiplexed subprotocols (io, cache, mem) on a link, sharing PCIe PHY

CXL.io
• PCIe based - discovery, register access, 

interrupts, initialization, I/O 
virtualization, DMA, etc.

CXL.cache
• Device access to processor memory
• Supports dievice caching of host 

memory with host processor 
orchestrating the coherency 
management

CXL.mem
• Processor access to device attached 

memory
• Host manages device attached 

memory similar to host memory

31



CXL Protocol Stack
: Designed for low latency

CXL.cache and CXL.mem optimized for latency
• Fixed message framing
• Separate transaction and link layer from IO

CXL.io flows pass through a stack that is largely 
identical a standard PCIe stack
• Dynamic framing
• Transaction Layer Packet (TLP) / Data Link Layer 

Packet (DLLP) encapsulated in CXL flits

32



CXL Use Cases
: There are three types of CXL device: Type 1, 2, 3

Type 1 Device:
Caching Devices / Accelerators

CXL.{io, cache}

Type 2 Device:
Accelerators with Memory

CXL.{io, cache, mem}

Type 3 CXL Device:
Memory Expanders

CXL.{io, mem} 33



CXL's Cache Coherence Architecture
: CXL has asymmetric architecture, and bias based coherency models (device/host)

asymmetric CCI* architecture
(*) Cache Coherent Interface

Device Bias Host Bias

34



CXL Summary
: CXL will accelerate heterogeneous computing and disaggregation

• CXL has the right features and architecture to 
enable a broad, open ecosystem for 
heterogeneous computing and disaggregation

• Right abstractions with CXL.cache and CXL.mem 
to deliver better performance with emerging 
applications such as AI, HPC, DL and future 
compute/memory-intensive computing

• CXL 2.0 development in full progress for 
additional usage models

• What if we have CXL based 
computational memory/storage?

Computati
onal

Memory/
Storage

Accelerator-Attached Memory

35



Wrap-up
New Standards for the Next Generation Computational Storage Devices

36

• SNIA Computational Storage (CS) Programming Model and API

• New standard for computational storage, essential to build computational storage ecosystem

• Extended Berkeley Packet Filter (eBPF)

• New usage of eBPF - to monitor/handle/filter device events, to execute user codes inside the device

• Compute Express Link (CXL)

• New CPU-device interconnect standard for heterogeneous computing and disaggregation

• Essential for computational SCM or memory pool for memory-intensive computing systems



Thank You

37


